
*/A STATA Primer
For Use With Introductory Econometrics

Author: Robert Pettis

Institute: University of Texas at Arlington

Date: April 23, 2020

Version: 1.02

"All models are wrong, but some are useful"-George Box

Contents

1 What is Stata? 1
1.1 Commands 1

1.2 The Stata Window 1

1.3 The File Menu 2

1.4 .do Files 2

1.5 log Files 5

1.6 Data Editor/Browser 6

1.7 Some Common Commands . . 7

2 Basic Analysis in Stata 10
2.1 Summarize 10

2.2 Linear Regression 11

Chapter 1 What is Stata?

Stata is a program developed by StataCorp intended to produce statistical analyses and

attractive graphics. We will use Stata as the primary tool such things as performing analysis by

hand can be quite difficult (or impossible).

The primary way to perform an analysis in Stata is through programming. Since many of

you may not have any experience coding, this can be an intimidating thought. But luckily, Stata

eases this burden in a number of ways. First, Stata’s programming language, informally called

ado, is a relatively easy language to learn and use.1 Stata makes this even easier by allowing

many commands to be conducted from a menu, and once the commands are run, the code that

you could have entered to have run the same analysis appears on screen. This is a great learning

tool!

1.1 Commands

Commands are lines of code that we can execute in order to accomplish a task. Often,

there are extra "options" when we run a command. These options are separated from the main

command by a comma (,). Each command has its own help file that gives more information that

you may need to successfully issue a command, such as format of the options, etc.:

help <name of the command here>

There, you can see many details about a given command, including different options you

can use as well as examples of the command being run.

1.2 The Stata Window

The main Stata window is presented in Figure 1.1. The leftmost pane is the History pane.

Each command you run will be included here.2 The Command Line Interface is where you can
manually type the commands to perform actions in Stata. . . though I recommend using a .do file

in order to do so. More on this later. The main pane is the Results window. This window shows

the commands that were issued, followed by the results of the command. Finally, the Variables
window shows a list of variables that are loaded.

1Stata actually has TWO programming languages. The second is called MATA and is for advanced users.

2However, if you run a .do file, the history command will only show that the .do file was run.

1.3 The File Menu – 2 –

Figure 1.1: The Stata Window

1.3 The File Menu

The file menu (Figure 1.2) has many useful options. First, note that by using the "open"

option, you can open datasets that are in Stata’s own format (.dta). You can also use the "import"

option to open datasets of other types (.xlsx, .csv, etc.). There is also the option to "print"

the results that appear in the Results pane; however, this will print EVERYTHING, including

commands that did not work. For this reason, I once again recommend using a .do file and the

log command.

1.4 .do Files

A .do file is simply a text editor for Stata commands. This can be very helpful in the learning

process because if we run something incorrectly, we can simply fix the incorrect code and run

the entire file again. You can open a new .do file by going under Window-> Do-file Editor ->

New Do-file Editor. You can then save this file to keep a record of the commands you wish to

run.

We can run the entire set of code (the whole .do file) by hitting the execute button (Figure

1.3). If we wanted to just execute part of the code, we could highlight only the code we wanted

to run, and then hit the execute button.

1.4 .do Files – 3 –

Figure 1.2: The file menu

Figure 1.3: The .do menus with the "execute" button highlighted.

Example1.1 Open a new do file editor. In the editor, paste the following code:

*This is an example of a .do file

sysuse auto

drop price

Now execute the code with the execute button. Next, execute the code one line at a time by

highlighting the code on each line and then hitting execute. Notice that we included the clear

option, which clears any other dataset out of memory when it loads the new one, thus starting

from scratch. This is an essential step. Consider why: we want to reproduce our work, and the

best way to do that is to see that all the steps we are taking produce the results we want each time

we run the code.

1.4 .do Files – 4 –

A main goal of us
ing the .do file as a w

ord pro-

cessor for
your code

is to be ab
le to conti

nuously

reproduce
your resul

ts. If you w
ere to atte

mpt to

compile the co
de in Exam

ple 1.1 a s
econd tim

e,

the code w
ould fail.

The reaso
n being th

at Stata

has alread
y performed the commands in the .do

file and th
is presents

a problem
for multiple rea

-

sons:

1. The auto dataset is
already open. Stata

will not automatically clear out the

dataset.

2. Even if we just
ran the second

command,

drop price, this
would also fail becau

se

price has alrea
dy been d

ropped! T
o make

this repro
ducible, a

dd the "clear" op
tion.

This will
completely reset the dataset to

the original clear dataset such that the

commands after
can also b

e appropri
ately

rerun.
sysuse

auto, clear

drop price

Hint!

1.4.1 Comments

While directions on how to make calculations and notes to yourself are not allowed on

exams, you may wish to highlight certain things when writing your code. For example, you may

want to highlight the text of the question you are trying to answer. You can add comments to

your code to accomplish this. Comments allow words to be input without Stata thinking they are

commands to run. This can be accomplished in several ways, but the easiest way for you could

be to use the asterisk (*). An example is shown in Example 1.1, but there are other ways to

comment as well. One way is to add double forward slashes. This method is convenient because,

unlike with the asterisk, you can make a comment on the same line as executable code:

sysuse auto, clear // This is a comment

Additionally, you can put many rows of text as a comment at one time, by placing the text

1.5 log Files – 5 –

in between combinations of a slash and asterisk:

/*

Comment here.

And also on the next line!

*/

You may have noticed that Stata makes use of colors when editing the .do file. Strings,

comments, numbers, key words, macros, etc. are colored differently. These coloring schemes

are to help you identify key components of your code quickly, as well as spot potential errors.

You can chance the visual scheme of your .do file from here: Edit>Preferences>Colors.

1.5 log Files

A helpful way to store the commands run, comments, and results is the log command. In a

.do file, we can encase things that we want to save, such as our homework problems, in a log and

save them for later.

1.6 Data Editor/Browser – 6 –

Example1.2 How To Use a Log File

log using homework1, replace text

*I will open the auto dataset and run a regression.

webuse auto

reg price mpg

log close

Note that I included two options on the log command (options in Stata come after the

comma). The first is replace. This command replaces prior versions of the file. This is

necessary unless you only run the file once. If you run it more than once without telling Stata to

replace the file, Stata will get mad at you and give you an error. The second option is text. This

will allow you to save the file as a text file so that you can print the file at home, away from Stata

(to open a log file without this option would require a copy of Stata on your computer).

Save adding this code until last. If you don’t,

and your code
produces

an error, then
you will

have to specificall
y use the lo

g close com
mand.

This is bec
ause the co

de may have br
oken befo

re

it reached
the log close com

mand, meaning the

log is still
open. Thi

s is a prob
lem because S

tata

will not op
en a new log while

one is still
open.

Hint!

1.6 Data Editor/Browser

You can browse data with the browse command. You can also edit data using the edit

command, or ed for short. Here, you can enter data into cells, just like a spreadsheet or other

type of database.

Note that you can use individual variables and logical operators to specify what you want

to open in the window. For example, in the auto dataset, if I wanted to view in the editor only

observations ofmpg > 15, I could type:

ed mpg if mpg>15

Note that different data types may be different colors in your editor (with colors depending

on your color scheme). In Figure 1.4, I show part of the data from the auto dataset. Notice that

strings are colored red and numbers are colored black. The variable foreign is also highlighted.

1.7 Some Common Commands – 7 –

Figure 1.4: The Editor window for the auto dataset.

This variable is numerical, but it has a label for each of the values it can take. For example, if

foreign = 0, then the label will show "Domestic."

1.7 Some Common Commands

clear all. The clear all command nearly completely clears everything that has been

saved into Stata’s memory. It may be a good thing to put at the top of a .do file in case you

run something more than once. This way, variables you create in the .do will be removed

(along with everything else). Stata will give you an error if you try to create a variable that

already exists.

list. The list command displays all observations for a variable in the output screen. If

we had a variable called crime, with 10 observations, we could look at all values of that

variable with the following code:

list crime

This would give us:

Often, you will have many observations. . . too many to list on your screen. You can

choose to display the observations you want. For example, if we wanted to display only

observations 1 through 5, we could run the following:

list crime in 1/5

This would give us:

1.7 Some Common Commands – 8 –

generate. The generate command, or gen for short3, generates a new variable. If I

wanted to create a new variable called crimebyten that was 1
10 the size of a variable called

crime, I could enter:

gen crimebyten=crime/10

We can quickly check if our code did what we wanted by looking in the browse or editor

windows, or by typing:

list crime crimebyten in 1/5

which gives us:

help. The help command needs to be your go-to for learning syntax. Often, but not

3Actually, just g would work!

1.7 Some Common Commands – 9 –

always, they include examples to show you ways you can apply the command. If, for

example, we wanted to see the help file for the command regress , we could type:

help regress

rename. The rename command renames a variable. The following code renames a vari-

able called var4 to crime:

rename var4 crime

scatter. The scatter command creates a scatterplot of two variables. The format is as

follows:

scatter <y-variable> <x-variable>

use. The use command will open a Stata dataset. Provided the file is in the working

directory, the code can be very simple. In this example, I open a file called crime.dta:4

use crime.dta, clear

Note the "clear" option which clears any dataset that was already in memory.

4Note: A working directory is a folder that Stata thinks to look to first for data. You can actually change this directory,
but I will not go into details here. Your working directory is usually the Documents folder, but to double check, you
can enter the following command: display "`c(pwd)'".

Chapter 2 Basic Analysis in Stata

2.1 Summarize

In this chapter, I will introduce the "how" for some of the basic data analysis procedures.

As we frequently did in the introduction, we will commonly refer to the Auto.dta dataset. The

first command we will use recalls some statistics we should have learned in our pre-requisite

statistics course(s): mean, standard deviation, min and max. The command to get these statistics

is summarize or sum for short.

*open auto.dta

sysuse auto, clear

*get stats on the price and mpg variables only

sum price mpg

*get stats on ALL variables

sum

Additionally, we can get further statistics if we use the detail or d for short, option. The

output from the below code is illustrated in Table 2.1.

*open auto.dta

sysuse auto, clear

*get stats on the price and mpg variables only

sum price mpg

*get stats on ALL variables

sum

Price
Percentiles Smallest

1% 3291 3291
5% 3748 3299
10% 3895 3667 Obs 74
25% 4195 3748 Sum of Wgt. 74
50% 5006.5 Mean 6165.257

Largest Std. Dev. 2949.496
75% 6342 13466
90% 11385 13594 Variance 8699526
95% 13466 14500 Skewness 1.653434
99% 15906 15906 Kurtosis 4.819188

Table 2.1: Example of Statistics Produced Using the ’Detail’ option.

2.2 Linear Regression – 11 –

Table 2.2: Regression Results: The Effect of Miles Per Gallon (mpg) on Price

2.2 Linear Regression

2.2.1 Simple Linear Regression

Linear regression in Stata is a simple process. Simply use the regress command (reg for

short), followed by the dependent variable (your y) and then your independent variable (your x).

If we want to explore the question of how miles per gallon might affect price, again using the

auto.dta dataset, the below code gives us a method.

*run a simple linear regression where y=price and x=mpg

reg price mpg

To drive the point home, again look at the order of the variables. The y variable first, then

x. This is one of the most common mistakes a user makes. The result of this regression is shown

in Table 2.2.

There are many numbers thrown our way, most of which will be covered in class; however,

there are a few things which we should ensure that we understand right away. First, notice the

mini-table in the upper-left corner. The three numbers under the "SS" (for Sum of Squares)

represent the Explained Sum of Squares (SSE), Residual Sum of Squares (SSR) and Total Sum

of Squares (SST). Note that the Explained Sum of Squares is referred to asModel Sum of Squares

in the table.

The next key thing to review are the regression coefficients themselves. The β1 coefficient

on miles per gallon (mpg) is expressed immediately to the right: a value of -238.89. If our OLS

assumptions hold, this number can be interpreted as follows: for each mile per gallon that the

car can drive, the price goes down, on average, by $238.89. This seems odd. Perhaps we missed

something and maybe we should add something to our analysis.1 Next, the β0 coefficient is

listed as "_cons" and has a value of $11,253.06. The interpretation of this is as follows: If the

vehicle has zero miles per gallon (mpg), then the average price of a vehicle is $11,253.06. This

1This is foreshadowing.

2.2 Linear Regression – 12 –

interpretation is problematic. There should be no cars in this dataset that approach zero miles

per gallon. In other cases, however, this intepretation might be more meaningful.

	1 What is Stata?
	1.1 Commands
	1.2 The Stata Window
	1.3 The File Menu
	1.4 .do Files
	1.5 log Files
	1.6 Data Editor/Browser
	1.7 Some Common Commands

	2 Basic Analysis in Stata
	2.1 Summarize
	2.2 Linear Regression

